Abstract

BackgroundNowadays, consumers increasingly prefer food with original, natural, and delicious flavors, which is closely linked to the content of volatile organic compounds (VOCs) in food. In recent years, the function of plant VOCs as natural food additives (flavoring and aromatizing agents, antibacterial agents) and their health benefits have attracted increased attention from the food industry. However, plant VOCs are quickly deteriorated because of their reactive molecular characteristics, which is the most critical bottleneck in their functions. Exploring the consequence, mechanism, sensor detection, and control technology of VOC deterioration can help to promote further advances in the protection of the food aroma and the application of plant VOCs in the food industry. Scope and approachFocusing on the highlighted roles of VOCs in the food industry and deterioration-prone characteristics, concluding the consequence, mechanism, sensor detection, and control technology of VOC deterioration. Key findings and conclusionsThe VOC deterioration in fresh food mainly results from composition variation induced by intracellular metabolism during storage, and metabolic loss induced by environmental factors. The leading causes inducing the VOC deterioration in processed food include physical loss by heating and chemical variations arising from the Maillard reaction, lipid oxidation, and other reactions. The biosensors assembled by proteins, peptides, or DNA showed excellent VOC sensitivity and selectivity performance. One technology cannot ideally protect every volatile component. Establishing the loss model and law of characteristic aroma components in specific technical treatment helps the component preservation of VOCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.