Abstract

Abstract Deterioration of fracture toughness of concrete caused by acid rain attack was investigated through laboratory-accelerated corrosion tests. Fracture toughness of the corroded concrete with different corrosion period was obtained by three point bending tests, and meanwhile the P-COMD curves and elastic modulus E of the corroded specimens with different corrosion degrees were also obtained. The experimental results showed that the deterioration of concrete surface is large and the corrosion depth increases with corrosion duration. The observation by scanning electron microscopy showed that the microstructures of crack tip are porous and loose due to acid corrosion, and many crisscross cracks appear at corrosion layer. Based on the experimental results, equivalent crack length in the fracture process zone and the effective fracture toughness KIC were also obtained by theoretical analysis. Under the impact of acid corrosion, the concrete material physical and chemical properties changed significantly, which made the corresponding resistance stresses to crack propagation decrease. The curves of fracture toughness versus corrosion depth were obtained in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.