Abstract

Invasive pneumococcal disease is a leading cause of human immunodeficiency virus (HIV)-associated mortality in sub-Saharan African children. Defective T-cell-mediated immunity partially explains this high disease burden, but there is an increased risk of invasive pneumococcal disease even in the context of a relatively preserved percentage of CD4 cells. We hypothesized that impaired B-cell immunity to this pathogen further amplifies the immune defect. We report a shift in the B-cell compartment toward an apoptosis-prone phenotype evident early in HIV disease progression. We show that, although healthy HIV-uninfected and minimally symptomatic HIV-infected children have similar numbers of isotype-switched memory B cells, numbers of pneumococcal protein antigen-specific memory B cells were lower in HIV-infected than in HIV-uninfected children. Our data implicate defective naturally acquired B-cell pneumococcal immunity in invasive pneumococcal disease causation in HIV-infected children and highlight the need to study the functionality and duration of immune memory to novel pneumococcal protein vaccine candidates in order to optimize their effectiveness in this population.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.