Abstract
A three-dimensional reinforced concrete (RC) deteriorating beam finite element for nonlinear analysis of concrete structures under corrosion is presented in this study. The finite element formulation accounts for both material and geometrical nonlinearity. Damage modelling considers uniform and pitting corrosion and includes the reduction of cross-sectional area of corroded bars, the reduction of ductility of reinforcing steel and the deterioration of concrete strength due to splitting cracks, delamination and spalling of the concrete cover. The beam finite element is validated with reference to the results of experimental tests carried out on RC beams with corroded reinforcement. The application potentialities of the proposed formulation are shown through the finite element analysis of a statically indeterminate RC beam and a three-dimensional RC arch bridge under different damage scenarios and corrosion penetration levels. The results indicate that the design for durability of concrete structures exposed to corrosion needs to rely on structural analysis methods capable to account for the global effects of local damage phenomena on the overall system performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.