Abstract
Detecting vulnerabilities in source code using graph neural networks (GNN) has gained significant attention in recent years. However, the detection performance of these approaches relies highly on the graph structure, and constructing meaningful graphs is expensive. Moreover, they often operate at a coarse level of granularity (such as function-level), which limits their applicability to other scripting languages like Python and their effectiveness in identifying vulnerabilities. To address these limitations, we propose DetectVul, a new approach that accurately detects vulnerable patterns in Python source code at the statement level. DetectVul applies self-attention to directly learn patterns and interactions between statements in a raw Python function; thus, it eliminates the complicated graph extraction process without sacrificing model performance. In addition, the information about each type of statement is also leveraged to enhance the model’s detection accuracy. In our experiments, we used two datasets, CVEFixes and Vudenc, with 211,317 Python statements in 21,571 functions from real-world projects on GitHub, covering seven vulnerability types. Our experiments show that DetectVul outperforms GNN-based models using control flow graphs, achieving the best F1 score of 74.47%, which is 25.45% and 18.05% higher than the best GCN and GAT models, respectively.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.