Abstract
This journal presents a technique for detecting scratches, cracks and other damage to car bodies using machine learning methods. This method is used to improve process efficiency and checking accuracy and can also reduce the cost and time required for manual inspection. The method includes collecting image datasets of cars in good and damaged condition, followed by preprocessing and segmentation to separate damaged or damaged car parts. not broken. Then, it is followed by a deep learning algorithm, namely You Only Look Once, or Faster Region-based Convolutional Neural Networks, which is used to build a detection model. The model is trained and tuned using the collected data, then evaluated using the test data to measure the accuracy and precision of the detection results. The experimental results show that the proposed method achieves high accuracy and efficiency in detecting scratches, cracks, and other defects on the car body, with precision of an average of more than 70%. This method provides a promising approach to improving the car body inspection process which can be used by taxi companies to help inspect and maintain vehicles more quickly and accurately, to help with insurance, avoid accidents and so on.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.