Abstract
The MINOS long-baseline experiment will use an intense neutrino beam, generated by Fermilab's Main Injector accelerator, and a 730 km flight path to search for neutrino oscillations. The 10,000 ton MINOS far detector will utilize toroidally magnetized steel plates interleaved with track chambers to reconstruct event topologies and to measure the energies of the muons, hadrons and electromagnetic showers produced by neutrino interactions. The MINOS collaboration is currently developing three alternative technologies for the track chambers: ‘Iarocci’ tubes (operated in either limited streamer or saturated proportional mode), RPC's (with either glass or ABS plates), and scintillator (either liquid or plastic) with wavelength shifting fiber readout. The technology choice will be made in mid 1997 based on the projected performance and cost of the 32,000 m 2 active detector system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.