Abstract
Nuclear reactions are responsible for the chemical evolution of stars, galaxies and the Universe. Unfortunately, at temperatures of interest for nuclear astrophysics, the cross-sections of the thermonuclear reactions are in the pico- femto-barn range and thus measuring them in the laboratory is extremely challenging. In this framework, major steps forward were made with the advent of underground nuclear astrophysics, pioneered by the Laboratory for Underground Nuclear Astrophysics (LUNA). The cosmic background reduction by several orders of magnitude obtained at LUNA, however, needs to be combined with high-performance detectors and dedicated shieldings to obtain the required sensitivity. In the present paper, we report on the recent and future detector-shielding designs at LUNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.