Abstract

Super-resolution fluorescence microscopy, with a spatial resolution beyond the diffraction limit of light, has become an indispensable tool to observe subcellular structures at a nanoscale level. To verify that the super-resolution images reflect the underlying structures of samples, the development of robust and reliable artifact detection methods has received widespread attention. However, the existing artifact detection methods are prone to report false alert artifacts because it relies on absolute intensity mismatch between the wide-field image and resolution rescaled super-resolution image. To solve this problem, we proposed DETECTOR, a structural information-guided artifact detection method for super-resolution images. It detects artifacts by computing the structural dissimilarity between the wide-field image and the resolution rescaled super-resolution image. To focus on structural similarity, we introduce a weight mask to weaken the influence of strong autofluorescence background and proposed a structural similarity index for super-resolution images, named MASK-SSIM. Simulations and experimental results demonstrated that compared with the state-of-the-art methods, DETECTOR has advantages in detecting structural artifacts in super-resolution images. It is especially suitable for wide-field images with strong autofluorescence background and super-resolution images of single molecule localization microscopy (SMLM). DETECTOR has extreme sensitivity to the weak signal region. Moreover, DETECTOR can guide data collection and parameter tuning during image reconstruction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.