Abstract

Detection of dural hematoma based on multi-channel near-infrared differential absorbance has the advantages of rapid and non-invasive detection. The location and number of detectors around the light source are critical for reducing the pathological characteristics of the prediction model on dural hematoma degree. Therefore, rational selection of detector numbers and their distances from the light source is very important. In this paper, a detector position screening method based on Variable Importance in the Projection (VIP) analysis is proposed. A preliminary modeling based on Partial Least Squares method (PLS) for the prediction of dural position μa was established using light absorbance information from 30 detectors located 2.0–5.0 cm from the light source with a 0.1 cm interval. The mean relative error (MRE) of the dural position μa prediction model was 4.08%. After VIP analysis, the number of detectors was reduced from 30 to 4 and the MRE of the dural position μa prediction was reduced from 4.08% to 2.06% after the reduction in detector numbers. The prediction model after VIP detector screening still showed good prediction of the epidural position μa. This study provided a new approach and important reference on the selection of detector location in near-infrared dural hematoma detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.