Abstract

Measurement-induced nonlinear operation in linear optics is a promising technique to realize quantum computation and communications. Such an operation has been demonstrated via the generation of photon-subtracted squeezed states, namely, Schrodinger-cat states. Nielsen and Molmer have proposed an efficient scheme to generate the cat states with larger amplitudes relative to previous experimental results. We present a simple experimental implementation of their scheme and analyze it while considering experimental imperfections. Our study indicates that the current photon detection technology meets the conditions necessary for their operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.