Abstract

Although the National Institute of Standards and Technology has measured the intrinsic quantum efficiency of Si and InGaAs avalanche photo diode (APD) materials to be above 98% by building an efficient compound detector, commercially available devices have efficiencies ranging between 15 and 75%. This means bandwidth, dark current, cost, and other factors are more important than quantum efficiency for existing applications. For non-classical correlated photon applications, the system's correlated signal-to-noise ratio is proportional to (ηN)½ /(1 − η)½, rather than the classical signal-to-noise (ηN)½. Consequently, the detector design trade space must be re-evaluated. This paper systematically examines the generic detection process, lays out the considerations needed for designing detectors for non-classical applications, and identifies the ultimate physical limits on quantum efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call