Abstract

We reexamine the well-known problem of “threshold behavior” or “performance breakdown” in the detection-estimation of very closely spaced emitters. In this extreme regime, we analyze the performance for maximum-likelihood estimation (MLE) of directions-of-arrival (DOA) for two close Gaussian sources over the range of sample volumes and signal-to-noise ratios (SNRs) where the correct number of sources is reliably estimated by information-theoretic criteria (ITC), but where one of the DOA estimates is severely erroneous (“outlier”). We show that random matrix theory (RMT) applied to the evaluation of theoretical MLE performance gives a relatively simple and accurate analytical description of the threshold behavior of MLE and ITC. In particular, the introduced “single-cluster” criterion provides accurate “ambiguity bounds” for the outliers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.