Abstract

In this paper we study sharp thresholds for detecting sparse signals in $\beta$-models for potentially sparse random graphs. The results demonstrate interesting interplay between graph sparsity, signal sparsity, and signal strength. In regimes of moderately dense signals, irrespective of graph sparsity, the detection thresholds mirror corresponding results in independent Gaussian sequence problems. For sparser signals, extreme graph sparsity implies that all tests are asymptotically powerless, irrespective of the signal strength. On the other hand, sharp detection thresholds are obtained, up to matching constants, on denser graphs. The phase transition mentioned above are sharp. As a crucial ingredient, we study a version of the Higher Criticism Test which is provably sharp up to optimal constants in the regime of sparse signals. The theoretical results are further verified by numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.