Abstract
In this paper we consider noncoherent detection structures for multipath Ricean/Rayleigh fading channels. The multipath components are assumed to be unresolved, with known delays. These delays could have been estimated, for example, by using super-resolution techniques or sounding the channel with a wide-band pulse. We show that the Rayleigh channel optimum receiver (R OPT) consists of an orthogonalization (or decorrelation) stage and then it implements an optimum decision rule for a resolved multipath channel. Since the optimum decision rule over Ricean channels is in general too complex for implementation, we propose several suboptimum structures such as the quadratic decorrelation receiver (QDR) and the quadratic receiver (QR). The QDR scheme exploits the decorrelation performed on the input samples. The nonlinear term due to the Ricean specular term is replaced by a quadratic form that is more suitable for implementation. Single-pulse performance of these schemes are studied for commonly used binary modulation formats such as FSK and DPSK. This paper shows that it is possible to have diversity-like gains over Ricean/Rayleigh multipath fading channels with unresolved components even if the channel is not fully tracked. Furthermore, this paper demonstrates the importance of using generalizations of RAKE receivers designed to handle the unresolvability condition. For two-path mixed-mode Ricean/Rayleigh channels, it is shown that improved performance can be obtained by using receivers that know the strength of the Ricean specular term.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.