Abstract

A rapid, high-resolution methodology for characterization, separation, and quantification of unlabeled inorganic nanoparticles extracted from biological media, based on sedimentation field-flow fractionation and light scattering detection is presented. Silica nanoparticles were added to either human endothelial cell lysate or rat lung tissue homogenate and incubated. The nanoparticles were extracted by acid digestion and then separated and characterized by sedimentation field-flow fractionation. Fractions collected at the peak maxima were analyzed by transmission electron microscopy (TEM) to verify the size and shape of the isolated nanoparticles. Using the linear relationship between the particle number and the area under the fractogram, the recoveries of particles from the tissue homogenate and cell lysate were calculated as 25% and 79%, respectively. The presented methodology facilitates detection, separation, size characterization, and quantification of inorganic nanoparticles in biological samples, within one experimental run.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call