Abstract
Reverse-bias pulsed deep-level transient spectroscopy (RDLTS) has recently been used for studies of electric field-enhanced emission from a deep-level defect. The sensitivity, spatial, and temperature resolutions of this technique are investigated and compared with those of DLTS. The electric field strength in a narrow region, where the transient capacitance signal comes from, can be accurately controlled by using RDLTS. The calculated results indicate that there is an optimal operating condition given by a range of emission pulse widths and heights. This operating condition is given for the best compromise of the temperature and spatial resolutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.