Abstract

Abstract Transect surveys without some means of estimating detection probabilities generate population size indices prone to bias because survey conditions differ in time and space. Knowing what causes such bias can help guide the collection of relevant survey covariates, correct the survey data, anticipate situations where bias might be unacceptably large, and elucidate the ecology of target species. We used negative binomial regression to evaluate confounding variables for gecko (primarily Hemidactylus frenatus and Lepidodactylus lugubris) counts on 220-m-long transects surveyed at night, primarily for snakes, on 9,475 occasions. Searchers differed in gecko detection rates by up to a factor of six. The worst and best headlamps differed by a factor of at least two. Strong winds had a negative effect potentially as large as those of searchers or headlamps. More geckos were seen during wet weather conditions, but the effect size was small. Compared with a detection nadir during waxing gibbous (nearly full)...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.