Abstract

Summary The redistribution of precipitation in forests depends on the amount of above-canopy precipitation and is characterised by high small-scale variability. Although higher and lower values of net forest precipitation at small scales are typically averaged at larger spatial scales, the small-scale variability of throughfall needs to be understood because subordinate ecological processes in the forest ecosystem, e.g., regeneration of tree species, often take place at the same small scale. High stemflow amounts and canopy driplines at the crown edge of particular tree species can only be explained by lateral flow processes within tree crowns. This study tests the hypothesis that lateral water translocation within the crown can be determined from simultaneous records of precipitation at defined measurement points below and above the canopy by taking single-tree characteristics such as species and crown width into account. Spatially explicit simultaneous measurements of gross precipitation (above-canopy reference) and throughfall were conducted repeatedly at 175 measurements points in a mixed European beech-Norway spruce stand for a total of 26 individual rain events. Subsequent analysis with a new regression approach resulted in an estimated average canopy storage capacity of 3.5 mm and 5.8 mm for beech (leaf-bearing period) and spruce stands, respectively. Values of calculated lateral flow showed considerable variability between individual measurement points. The highest discharge amounts were observed at positions below the inner beech crowns during the leaf-bearing period. For an exemplary rainfall event with a gross precipitation of 25 mm, the predicted discharge ranged from 5 mm underneath the inner beech crown to about zero near the crown edge. A comparison with the measured values indicated that the predicted amount of lateral flow, which could be translated into stemflow for single beech trees, was realistic. However, for the same rainfall event, lateral flow in spruce crowns was mainly identified in the outer crown. The derived functions for calculating lateral water translocation may be incorporated into single-tree models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.