Abstract

In this work, the UV detection properties of ZnO tetrapod (ZnO-T) networks functionalized with carbon nanotubes (CNTs), as well as for individual ZnO-T-CNT are reported. The ZnO-T networks were fabricated via a flame transport synthesis (FTS) approach, while hybridization with CNTs was performed by a simple dripping procedure using a commercially available aqueous CNT dispersion (CarboByk 9810). The amount of CNT in the hybrid material was varied in the range of 0.8–4.0 wt% CNTs. While hybrid networks demonstrated inferior UV sensing performances compared to pristine ZnO-T networks, the individual ZnO-T-CNT showed more improved performances, even compared to individual ZnO-T. The fabricated microsensor showed an UV response of ∼ 700 at 3 V applied bias voltage. The calculated time constants for rising and decaying photocurrent are also lower compared to individual ZnO-T. These results are quite promising for high performance optoelectronic applications, especially for UV photodetectors, demonstrating the high efficiency of hybridization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.