Abstract
In recent decades, several neutron stars (NSs), particularly pulsars, with masses of M > 2 M ⊙ have been observed. On the other hand, the existence of massive white dwarfs, even violating the Chandrasekhar mass limit, was inferred from the peak luminosities of Type Ia supernovae. Hence, there is a generic question of the origin of massive compact objects. Here we explore the existence of massive, magnetized, rotating NSs with the soft and steep equations of state by solving axisymmetric stationary stellar equilibria in general relativity. For our purposes, we consider the Einstein equation solver for stellar structure XNS code. Such rotating NSs with magnetic fields and rotation axes misaligned, and hence a nonzero obliquity angle, can emit continuous gravitational waves (GWs), which can be detected by upcoming detectors, e.g., the Einstein Telescope, etc. We discuss the decay of the magnetic field, angular velocity, and obliquity angle with time due to angular momentum extraction by GWs and dipole radiation, which determine the timescales related to the GW emission. Further, in the Alfvén timescale, a differentially rotating, massive proto-NS rapidly settles into a uniformly rotating, less massive NS due to magnetic braking and viscosity. These explorations suggest that detecting massive NSs is challenging and sets a timescale for detection. We calculate the signal-to-noise ratio of GW emission, which confirms that any detector cannot detect them immediately, but that they are detectable by the Einstein Telescope and Cosmic Explorer over months of integration time, leading to direct detection of NSs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.