Abstract

We move beyond antibody-antigen binding systems and demonstrate that short peptide ligands can be used to efficiently capture Bacillus subtilis (a simulant of Bacillus anthracis) spores in liquids. On an eight-cantilever array chip, four cantilevers were coated with binding peptide (NHFLPKV-GGGC) and the other four were coated with control peptide (LFNKHVP-GGGC) for reagentless detection of whole B. subtilis spores in liquids. The peptide-ligand-functionalized microcantilever chip was mounted onto a fluid cell filled with a B. subtilis spore suspension for approximately 40 min; a 40 nm net differential deflection was observed. Fifth-mode resonant frequency measurements were also performed before and after dipping microcantilever arrays into a static B. subtilis solution showing a substantial decrease in frequency for binding-peptide-coated microcantilevers as compared to that for control peptide cantilevers. Further confirmation was obtained by subsequent examination of the microcantilever arrays under a dark-field microscope. Applications of this technology will serve as a platform for the detection of pathogenic organisms including biowarfare agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.