Abstract

Early growth response protein 1 (EGR1), as a characteristic example of zinc finger proteins, acts as a transcription factor in eukaryotic cells, mediating protein-protein interactions. Here, a novel electrochemiluminescence (ECL)-based protocol for EGR1 assay was developed with a new eco-friendly emitter: singlet oxygen produced in the vicinity of nanoclay-supported zinc proto-porphyrin IX (ZnPPIX). Its electrochemical reduction stimulates an intense monochromic CL irradiation at 644 nm from the dissolved oxygen as endogenous coreactant in the aqueous solution. This ECL derivation was rationalized via hyphenated spectroscopy and theoretical calculation. To promote hydrophilicity and solid-state immobilization of porphyrins, the lamellar artificial laponite was employed as a nanocarrier owning to its large specific area without the blackbody effect. The facile exfoliation of laponite produced quality monolayered nanosheets and facilitated the adsorption and flattening of PPIX upon the surface, resulting in a highly efficient ECL emission. Based on the release of Zn(2+) in zinc finger domains of EGR1 upon contact with the ECL-inactive PPIX, which was monitored by circular dichroism and UV-absorption, a sensitive Zn(2+)-selective electrode for the "signal-on" detection of EGR1 was prepared with a detection limit down to 0.48 pg mL(-1) and a linearity over 6 orders of magnitude. The proposed porphyrin-based ECL system thus infused fresh blood into the traditional ECL family, showing great promise in bioassays of structural Zn(II) proteins and zinc finger-binding nucleotides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.