Abstract

White spot syndrome virus (WSSV) is a significant threat to the aquaculture sector, causing mortality among crabs and shrimps. Currently available diagnostic tests for WSSV are not rapid or cost-effective, and a new detection method is therefore needed. This study demonstrates the development of a biosensor by functionalization of magnetosomes with VP28-specific antibodies to detect WSSV in seafood. The magnetosomes (1 and 2 mg/ml) were conjugated with VP28 antibody (0.025-10 ng/µl), as confirmed by spectroscopy. The magnetosome-antibody conjugate was used to detect the VP28 antigen. The binding of antigen to the magnetosome-antibody complex resulted in a change in absorbance. The magnetosome-antibody-antigen complex was then concentrated and brought near a screen-printed carbon electrode by applying an external magnetic field, and the antigen concentration was determined using impedance measurements. The VP28 antigen (0.025 ng/µl) bound more efficiently to the magnetosome-VP28 antibody complex (0.025 ng/µl) than to the VP28 antibody (0.1 ng/µl) alone. The same assay was repeated to detect the VP28 antigen (0.01 ng/µl) in WSSV-infected seafood samples using the magnetosome-VP28 antibody complex (0.025 ng/µl). The WSSV in the seafood sample was also drawn toward the electrode due to the action of magnetosomes controlled by the external magnetic field and detected using impedance measurement. The presence of WSSV in seafood samples was verified by Western blot and RT-PCR. Cross-reactivity assays with other viruses confirmed the specificity of the magnetosome-based biosensor. The results indicate that the use of the magnetosome-based biosensor is a sensitive, specific, and rapid way to detect WSSV in seafood samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.