Abstract

A locally optimum detector structure is derived for the detection of weak signals in non-Gaussian environments. Optimum performance is obtained by employing a zero-memory nonlinearity prior to the matched filter that would be optimum for detecting the signal were the noise Gaussian. The asymptotic detection performance of the locally optimum detector under non-Gaussian conditions is derived and compared with that for the corresponding detector optimized for operations in Gaussian noise. Numerical results for the asymptotic detection performance are shown for signal detection in noise environments of practical interest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call