Abstract

Hydrogen embrittlement remains a barrier to widespread adoption of hydrogen as a carbon-neutral energy source. Here, hydrogen embrittlement mechanisms are investigated across length scales in iron using transmission X-ray microscopy (TXM), digital image correlation (DIC), and notched tensile testing during in-situ electrochemical hydrogen charging. TXM reveals void size and spatial distribution ahead of a propagating crack. We find hydrogen charging leads to voids within ∼10 μm of the crack tip and suppression of voids beyond this distance. Near the crack tip, voids are elongated in the direction of the crack and are smaller than voids in an uncharged sample. In the presence of hydrogen, these voids lead to quasi-cleavage fracture and a sharper crack tip. DIC shows localization and reduction of plastic strain with hydrogen charging, and tensile testing reveals a reduction in fracture energy and elongation at failure. These results are discussed in the context of hydrogen embrittlement mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call