Abstract

To quantify viable probiotic Lacticaseibacillus paracasei (L. paracasei) in fermented milk accurately and quickly, propidium monoazide combined with quantitative loop-mediated isothermal amplification (PMA-qLAMP) was applied. The optimal PMA treatment conditions for treating a L. paracasei suspension were determined using an orthogonal test to eliminate the DNA amplification of 108 CFU/mL of dead L. paracasei. Primers were designed based on the species-specific gyrB gene of L. paracasei. A phylogenetic tree based on the gyrB gene showed that L. paracasei clustered on the same branch with 91% support. Compared with the 16 strains commonly found in fermented milk, three strains of L. paracasei showed positive PMA-qLAMP results, and the melting temperature was approximately 82.4°C.Therewasa linear relationship (R2=0.9983) between the Ct values and the logarithm of the concentration of viable bacteria. The PMA-qLAMP detection limit for the L. paracasei artificially added to fermented milk was 7.3× 102 CFU/mL. There was no significant difference between the logarithm values of the concentration of viable L. paracasei of 50 fermented milk samples within shelf life using the PMA-qLAMP and plate count methods (P >0.01). PMA-qLAMP is specific and accurate for obtaining reliable results faster than when using plate counts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call