Abstract

Ventricular fibrillation (VF) is a critical ventricular arrhythmia with severe consequences. Due to the severity of VF, it urgently requires a rapid and accurate detection of abnormal patterns in ECG signals. Here, we present an efficient method to detect abnormal electrocardiogram (ECG) signals associated with VF by measuring orthogonality between intrinsic mode functions (IMFs) derived from a data-driven decomposition method, namely, ensemble empirical mode decomposition (EEMD). The proposed method incorporates the decomposition of the ECG signal into its IMFs using EEMD, followed by the computation of the angles between subsequent IMFs, especially low-order IMFs, as the features to discriminate normal and abnormal ECG patterns. The proposed method was validated through experiments using a public MIT-BIH ECG dataset for its effectiveness in detecting VF ECG signals compared to conventional methods. The proposed method achieves a sensitivity of 99.22%, a specificity of 99.37%, and an accuracy of 99.28% with a 3 s ECG window and a support vector machine (SVM) with a linear kernel, which performs better than existing VF detection methods. The capability of the proposed method can provide a perspective approach for the real-time and practical computer-aided diagnosis of VF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call