Abstract

Because the valleys in the band structure of graphene are related by time-reversal symmetry, electrons from one valley are reflected as holes from the other valley at the junction with a superconductor. We show how this Andreev reflection can be used to detect the valley polarization of edge states produced by a magnetic field. In the absence of intervalley relaxation, the conductance GNS=(2e2/h)(1-cosTheta) of the junction on the lowest quantum Hall plateau is entirely determined by the angle Theta between the valley isospins of the edge states approaching and leaving the superconductor. If the superconductor covers a single edge, Theta=0 and no current can enter the superconductor. A measurement of GNS then determines the intervalley relaxation time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call