Abstract
Microstructured optical fibers containing microchannels and Bragg grating inscribed were internally functionalized with a peptide nucleic acid (PNA) probe specific for a gene tract of the genetically modified Roundup Ready soy. These fibers were used as an optofluidic device for the detection of DNA by measuring the shift in the wavelength of the reflected IR light. Enhancement of optical read-out was obtained using streptavidin coated gold-nanoparticles interacting with the genomic DNA captured in the fiber channels (0%, 0.1%, 1% and 10% RR-Soy), enabling to achieve statistically significant, label-free, and amplification-free detection of target DNA in low concentrations, low percentages, and very low sample volumes. Computer simulations of the fiber optics based on the finite element method (FEM) were consistent with the formation of a layer of organic material with an average thickness of 39nm for the highest percentage (10% RR soy) analysed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.