Abstract

We demonstrate proof-of-concept graphene sensors for environmental monitoring of ultralow concentration NO2 in complex environments. Robust detection in a wide range of NO2 concentrations, 10-154 ppb, was achieved, highlighting the great potential for graphene-based NO2 sensors, with applications in environmental pollution monitoring, portable monitors, automotive and mobile sensors for a global real-time monitoring network. The measurements were performed in a complex environment, combining NO2/synthetic air/water vapor, traces of other contaminants, and variable temperature in an attempt to fully replicate the environmental conditions of a working sensor. It is shown that the performance of the graphene-based sensor can be affected by coadsorption of NO2 and water on the surface at low temperatures (≤70 °C). However, the sensitivity to NO2 increases significantly when the sensor operates at 150 °C and the cross-selectivity to water, sulfur dioxide, and carbon monoxide is minimized. Additionally, it is demonstrated that single-layer graphene exhibits two times higher carrier concentration response upon exposure to NO2 than bilayer graphene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.