Abstract
We present a microscopic calculation of the nondissipative current through a superconducting quantum point contact coupled to a mechanical oscillator. Using the non-equilibrium Keldysh Green function approach, we determine the current-phase relation. The latter shows that at certain phases, the current is sharply suppressed. These dips in the current-phase relation provide information about the oscillating frequency and coupling strength of the mechanical oscillator. We also present an effective two-level model from which we obtain analytical expressions describing the position and width of the dips. Our findings are of relevance for nanomechanical resonators based on superconducting materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.