Abstract

Abstract We report the novel detection of complex high column density tails in the probability distribution functions (PDFs) for three high-mass star-forming regions (CepOB3, MonR2, NGC 6334), obtained from dust emission observed with Herschel. The low column density range can be fitted with a lognormal distribution. A first power-law tail starts above an extinction (AV) of ∼6–14. It has a slope of α = 1.3–2 for the ρ ∝ r−α profile for an equivalent density distribution (spherical or cylindrical geometry), and is thus consistent with free-fall gravitational collapse. Above AV ∼40, 60, and 140, we detect an excess that can be fitted by a flatter power-law tail with α > 2. It correlates with the central regions of the cloud (ridges/hubs) of size ∼1 pc and densities above 104 cm−3. This excess may be caused by physical processes that slow down collapse and reduce the flow of mass towards higher densities. Possible are: (1) rotation, which introduces an angular momentum barrier, (2) increasing optical depth and weaker cooling, (3) magnetic fields, (4) geometrical effects, and (5) protostellar feedback. The excess/second power-law tail is closely linked to high-mass star-formation though it does not imply a universal column density threshold for the formation of (high-mass) stars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.