Abstract

The impact of anthropogenic actions on the environment and climate has recently increased the need to map the afforested areas. In this context, the three-dimensional (3D) measurement of vegetation structures plays an important role in having an efficient forest inventory and management. Nowadays, the airborne LiDAR (Light Detection And Ranging) system offers high horizontal resolution as well as vertical dimension information, making it possible to estimate both three-dimensional characteristics of individual trees and to identify the distribution of forest resources in the region. This study aims to present a processing approach for the determination of each tree’s position (X and Y location, as well as tree height) and its dimensions (crown diameter, area and volume) using geometrically accurate 3D point clouds (data sets were collected in a forested area in Argeș County, Romania). To a better understanding of the forest features and to explore the potential of remote sensing for such analysis, it was further exploited Digital Terrain Model (DTM), Digital Surface Model (DSM), and Canopy Height Model (CHM) derivation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call