Abstract
Bacterial cell wall synthesis is an essential process in bacteria and one of the best targets for antibiotics. A critical step on this pathway is the export of the lipid-linked cell wall monomer, Lipid II, by its transporter MurJ. The mechanism by which MurJ mediates the transbilayer movement of Lipid II is not understood because intermediate states of this process have not been observed. Here we demonstrate a method to capture and detect interactions between MurJ and its substrate Lipid II by photo-cross-linking and subsequent biotin-tagging. We show that this method can be used to covalently capture intermediate transport states of Lipid II on MurJ in living cells. Using this strategy we probed several lethal arginine mutants and found that they retain appreciable substrate-binding ability despite being defective in Lipid II transport. We propose that Lipid II binding to these residues during transport induces a conformational change in MurJ required to proceed through the Lipid II transport cycle. The methods described to detect intermediate transport states of MurJ will be useful for characterizing mechanisms of inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.