Abstract

The aim of this study was to detect transferable oxazolidinone resistance determinants (cfr, optrA and poxtA) in Enterococcus faecalis and Enterococcus faecium isolates of swine origin in Sichuan Province, China. A total of 158 enterococcal isolates (93 E. faecalis and 65 E. faecium) isolated from 25 large-scale swine farms (2016-2017) were screened for the presence of cfr, optrA and poxtA by PCR. The genetic environments of cfr, optrA and poxtA were characterised by whole-genome sequencing. Transfer of oxazolidinone resistance determinants was determined by conjugation or electrotransformation experiments. The transferable oxazolidinone resistance determinants cfr, optrA and poxtA were detected in zero, six and one enterococcal isolates, respectively. The poxtA gene in one E. faecalis isolate was located on a 37 990-bp plasmid that co-harboured fexB, cat, tet(L) and tet(M) and could be conjugated to E. faecalis JH2-2. One E. faecalis isolate harboured two different OptrA variants, including one variant with a single substitution (Q219H) that has not been reported previously. Two optrA-carrying plasmids, pC25-1 (45 581bp) and pC54 (64 500bp), shared a 40 494-bp identical region containing the genetic context IS1216E-fexA-optrA-erm(A)-IS1216E that could be electrotransformed into Staphylococcus aureus. Four different chromosomal optrA gene clusters were found in five strains, in which optrA was associated with Tn554 or Tn558 inserted into the radC gene. This study highlights the fact that mobile genetic elements, such as plasmids, IS1216E, Tn554 and Tn558, may facilitate the horizontal transmission of optrA and poxtA genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call