Abstract

The near-field signature of the vortical structures shed from the blade tips behind a 2.5MW horizontal axis wind turbine in a stably-stratified atmospheric boundary layer (ABL) was quantified for the first time. This study utilizes wind velocity measurements from sonic anemometers installed on a meteorological tower, which offers continuous characterization of wind conditions in the field, at elevations coinciding with the bottom, hub and top tip heights of the turbine. Using the stringent criteria on wind speed, direction and steadiness, we are able to subsample the dataset in which the sonic anemometers are positioned near the edge of the turbine wake. The spectral analysis of this dataset shows a distinct peak at the turbine rotational frequency (fT) for hub and top tip height measurements. Based on recent literature, we infer that this peak is the signature of tip-vortices, and the shift of this signature from blade-passing frequency (3fT) to fT is likely to be caused by vortex grouping phenomena. Slight changes of mean wind direction in other data samples result in the absence of the spectral peak, suggesting the very local extent of tip vortices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.