Abstract

Recently, the trend of thyroid hormones (TH) consumption in the sports community has been published. It is known the capacity of the exogenously administered TH to enhance metabolism, being an attractive feature for athletes, who search for weight control and increased caloric expenditure. This paper aimed the validation of a method to measure TH and related compounds in urine by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The method was applied to urine samples collected before and after the administration of a diiodothyronine (3,5-T2) supplement. A method to detect nine TH included an enzymatic hydrolysis, liquid-liquid extraction, and solid-phase extraction. The extracts were analyzed by LC-MS/MS. Validated parameters showed good results for accuracy (85%-104%), precision (3%-16%), LOD (10-40 pg/mL, except for thyronacetic acids that was 200 pg/mL), and the combined uncertainty (2.2%-22%). Maximum concentration of 3,5-T2 in pre-administration samples was 0.71 ng/mL, and after 30 h of the last administration, concentrations returned to pre-administration values. Maximum values of ratios between the analyte and thyronine, T3, and T4 were 0.09, 0.19, and 0.12, respectively, and after 30 h of the last administration, the ratios reached back the basal values. Acidic or basic metabolites were not found in urine at least at the method LOD. A proposed method to assess TH in urine was validated, and as a proof of concept, its efficacy was demonstrated with an excretion study of 3,5-diiodothyronine. The consumption of 3,5-T2 was detected in urine measuring the analyte concentration and ratios between the analyte and thyronine, T3, and T4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.