Abstract

Surface-enhanced Raman scattering (SERS) substrates based on metallic nanoparticles locked in some flexible materials have great potential for rapid detection of pesticide residues in foods, but these substrates are generally not reusable. A bendable and reusable sponge based on polydimethylsiloxane (PDMS) and Au nanospheres was synthesized and employed as SERS substrate to analyze thiram on the surfaces of apples and grapes (20-1000 ng cm-2 ) and in their juices (0.5-5.0mg L-1 ) with minimum sample pretreatments. The lowest detectible concentrations for thiram in fruit juices and on fruit skins were 0.5mg L-1 and 20 ng cm-2 , respectively. The Au-PDMS substrate had acceptable intra-reproducibility for SERS analysis of thiram in fruit juices and on fruit skins, resulting in 3.6-16.9% relative standard deviation (RSD) for the SERS signal of the primary peak of thiram. Moreover, the Au-PDMS substrate exhibited distinguished reusability and stability, which could provide a reproducible SERS signal of thiram in apple juice even after the substrate being reused ten times (RSDs for the three major characteristic peaks of thiram were 2.7-10.5% during the ten reused cycles). This flexible and reusable Au-PDMS SERS substrate for thiram detection could be readily extended to the analysis of other trace chemicals in a broad range of foods, providing a new possibility for SERS application. © 2022 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call