Abstract
Trimethylamine-N-oxide (TMAO) is a biomarker of the cardiovascular disease that is one of the leading causes of worldwide death. Facile detection of TMAO can significantly improve the survival rate of this disease by allowing early prevention. However, the UV-vis silent nature of TMAO makes it intricated to be detected by conventional sensing materials or analytical instruments. Here we show a bilanthanide metal-organic framework functionalized by borono group for the recognition of TMAO. Superior sensitivity, selectivity and anti-interference ability were achieved by the inverse emission intensity changes of the two lanthanide centers. The limit of detection is 15.6 μM, covering the clinical urinary concentration range of TMAO. A smartphone application was developed based on the change in R-G-B chromaticity. The sensing mechanism via a well-matched outer-sphere interaction governing the sensing function was studied in detail, providing fundamentals in molecular level for the design of advanced sensing materials for UV-Vis silent molecules.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.