Abstract

A quantitative real time reverse-transcription polymerase chain reaction (qRT-PCR) assay with specific primers recommended by the World Health Organization (WHO) has been widely used successfully for detection and monitoring of the pandemic H1N1/2009 influenza A virus. In this study, we report the design and characterization of a novel set of primers to be used in a qRT-PCR assay for detecting the pandemic H1N1/2009 virus. The newly designed primers target three regions that are highly conserved among the hemagglutinin (HA) genes of the pandemic H1N1/2009 viruses and are different from those targeted by the WHO-recommended primers. The qRT-PCR assays with the newly designed primers are highly specific, and as specific as the WHO-recommended primers for detecting pandemic H1N1/2009 viruses and other influenza viruses including influenza B viruses and influenza A viruses of human, swine, and raccoon dog origin. Furthermore, the qRT-PCR assays with the newly designed primers appeared to be at least 10-fold more sensitive than those with the WHO-recommended primers as the detection limits of the assays with our primers and the WHO-recommended primers were 2.5 and 25 copies of target RNA per reaction, respectively. When tested with 83 clinical samples, 32 were detected to be positive using the qRT-PCR assays with our designed primers, while only 25 were positive by the assays with the WHO-recommended primers. These results suggest that the qRT-PCR system with the newly designed primers represent a highly sensitive assay for diagnosis of the pandemic H1N1/2009 virus infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.