Abstract

Staphylococcus epidermidis is a common cause of catheter-associated infections and septicemia in immunocompromised patients. To answer the question whether S. epidermidis skin isolates differ from isolates causing septicemic diseases, 51 strains obtained from blood cultures, 1 strain from shunt-associated meningitis, and 36 saprophytic isolates were characterized. The study demonstrates that most of the blood culture strains formed a multilayered biofilm on plastic material, whereas skin and mucosal isolates did not. Moreover, biofilm-producing strains were found to generate large bacterial autoaggregates in liquid culture. Autoaggregation and biofilm formation on polymer surfaces was associated with the presence of a DNA sequence encoding an intercellular adhesion gene cluster (ica) that mediates the production of a polysaccharide intercellular adhesin. The presence of the intercellular adhesion genes in blood culture isolates was also found to be correlated with the exhibition of black colonies on Congo red agar, whereas the adhesin-negative strains formed red colonies. Upon subcultivation on Congo red agar, the black colony forms of the blood culture strains exhibited red colony variants which were biofilm and autoaggregation negative and occurred at a frequency of 10(-5). The DNA analysis of these S. epidermidis variants by pulsed-field gel electrophoresis and Southern hybridization with an ica-specific gene probe revealed no detectable difference between the black and red colony types. Moreover, after repeated passage, the phenotype of the parent strain could be restored. Therefore, these colony forms were regarded as phase variants. This phenotypic change was observed exclusively in adhesin-positive clinical isolates and not in adhesin-negative saprophytic strains of S. epidermidis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.