Abstract

We present analysis of fast variability of Very Large Telescope/ISAAC (infra-red), \textit{XMM-Newton}/OM (optical) and EPIC-pn (X-ray), and RXTE/PCA (X-ray) observations of the black hole X-ray binary GX 339-4 in a rising hard state of its outburst in 2010. We report the first detection of a Quasi Periodic Oscillation (QPO) in the infra-red band (IR) of a black hole X-ray binary. The QPO is detected at 0.08 Hz in the IR as well as two optical bands (U and V). Interestingly, these QPOs are at half the X-ray QPO frequency at 0.16 Hz, which is classified as the type-C QPO; a weak sub-harmonic close to the IR and optical QPO frequency is also detected in X-rays. The broad band sub-second time scale variability is strongly correlated in IR/X-ray bands, with X-rays leading the IR by over 100 ms. This short time delay, shape of the cross correlation function and spectral energy distribution strongly indicate that this broad band variable IR emission is the synchrotron emission from the jet. A jet origin for the IR QPO is strongly favoured, but cannot be definitively established with the current data. The spectral energy distribution indicates a thermal disc origin for the bulk of the optical emission, but the origin of the optical QPO is unclear. We discuss our findings in the context of the existing models proposed to explain the origin of variability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.