Abstract

In order to develop a method for detecting metabolism-mediated embryotoxicity, differentiating embryonic stem (ES) cells were exposed to the well-known proteratogen, cyclophosphamide (CPA). CPA was tested in a scientifically validated embryonic stem-cell test (EST), and in the newly developed reporter-gene assay for developmental cardiotoxicity. Both assays gave false-negative results. Because no metabolic competence (cytochrome P450 [CYP] activity) was found in the ES cells under the selected culture conditions, a simple biotransformation system was combined with the reporter-gene assay. As the metabolic pathway of CPA is well characterised, the genetically engineered mammalian cell line V79, transfected with CYP2B1 cDNA, was selected as a biotransformation system. CYP2B1 is responsible for transforming CPA into teratogenically active metabolites. The supernatants of genetically engineered V79 cells were analysed in the reporter-gene assay for developmental cardiotoxicity. In preliminary experiments, the combined system was able to detect the embryotoxic potential of the proteratogen, CPA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.