Abstract

Mutations in the gene encoding fukutin protein cause Fukuyama muscular dystrophy, a severe congenital disorder that occurs mainly in Japan. A major consequence of the mutation is reduced glycosylation of alpha-dystroglycan, which is also a feature of other forms of congenital and limb-girdle muscular dystrophy. Immunodetection of endogenous fukutin in cells and tissues has been difficult and this has hampered progress in understanding fukutin function and disease pathogenesis. Using a new panel of monoclonal antibodies which bind to different defined sites on the fukutin molecule, we now show that fukutin has the predicted size for a protein without extensive glycosylation and is present at the Golgi apparatus at very low levels. These antibodies should enable more rapid future progress in understanding the molecular function of fukutin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.