Abstract

Sensing biological agents at the genomic level, while enhancing the response time for biodetection over commonly used, optics-based techniques such as nucleic acid microarrays or enzyme-linked immunosorbent assays (ELISAs), is an important criterion for new biosensors. Here, we describe the successful detection of a 35-base, single-strand nucleic acid target by Hall-based magnetic transduction as a mimic for pathogenic DNA target detection. The detection platform has low background, large signal amplification following target binding and can discriminate a single, 350 nm superparamagnetic bead labeled with DNA. Detection of the target sequence was demonstrated at 364 pM (<2 target DNA strands per bead) target DNA in the presence of 36 μM nontarget (noncomplementary) DNA (<10 ppm target DNA) using optical microscopy detection on a GaAs Hall mimic. The use of Hall magnetometers as magnetic transduction biosensors holds promise for multiplexing applications that can greatly improve point-of-care (POC) diagnostics and subsequent medical care.

Highlights

  • The ability to detect and discriminate specific nucleic acid sequences within a biological mixture has implications for genome sequencing and single-nucleotide polymorphism (SNP) detection, biowarfare target detection, and the development of an efficient point-of-care (POC) device for pathogen identification [1,2,3,4,5,6]

  • Coupling the extreme sensitivity of Hall-based magnetic detection, which operates over a wide magnetic field and temperature range, with the versatility and specificity of DNA base pairing can allow the realization of a new biological detection strategy that will improve POC diagnostics and subsequent medical treatment

  • The use of a SPM nanobead does not hinder the specificity of Watson-Crick base pairing for the target nucleic acid as evidenced by sequence-specific DNA hybridization (Figure 2 and Figure S2)

Read more

Summary

Introduction

The ability to detect and discriminate specific nucleic acid sequences within a biological mixture has implications for genome sequencing and single-nucleotide polymorphism (SNP) detection, biowarfare target detection, and the development of an efficient point-of-care (POC) device for pathogen identification [1,2,3,4,5,6]. Through the integration of biology with nanotechnology, a detection platform utilizing magnetic transduction can capitalize on the high biological specificity of DNA base pairing, the scalability of nanotechnology, the selectivity of self-assembled monolayer technology, and the sensitivity of magnetic transduction [7, 8]. Coupling the extreme sensitivity of Hall-based magnetic detection, which operates over a wide magnetic field and temperature range, with the versatility and specificity of DNA base pairing can allow the realization of a new biological detection strategy that will improve POC diagnostics and subsequent medical treatment. In this paper the detection of a 35-base pair DNA target sequence is demonstrated at the single-bead level on a Hall magnetometer biosensor. The detection strategy utilizes three-strand DNA annealing to colocalize a superparamagnetic (SPM) bead labeled probe strand, a label-free target strand, and a receptor strand at the surface of the Hall device. At the concentrations of DNA used in the mimic, the device platform can be optimized for clinical

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call