Abstract

The preference for a shorter chain component at a polymer blend surface impacts surface properties key to application-specific performance. While such segregation is known for blends containing low molecular weight additives or systems with large polydispersity, it has not been reported for anionically polymerized polymers that are viewed, in practice, as monodisperse. Observations with surface layer matrix-assisted laser desorption ionization time-of-flight mass spectrometry (SL-MALDI-ToF-MS), which distinguishes surface species without labeling and provides the entire molecular weight distribution, demonstrate that entropically driven surface enrichment of shorter chains occurs even in low polydispersity materials. For 6 kDa polystyrene the number-average molecular weight (Mn) at the surface is ca. 300 Da (5%) lower than that in the bulk, and for 7 kDa poly(methyl methacryalate) the shift is ca. 500 Da. These observations are in qualitative agreement with results from a mean-field theory that considers a homopolymer melt with a molecular-weight distribution matched to the experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.