Abstract

This study examines the use of Rayleigh waves for the detection and sizing of surface-breaking cracks in concrete members. First, finite element simulations are performed to define the conditions for Rayleigh wave propagation in members with rectangular cross-section followed by an experimental study with a concrete beam. Time histories recorded at different locations are 2D Fourier transformed into the frequency-wavenumber domain to enhance interpretation and data analysis. Rayleigh waves form at depths less than half the beam depth. With the introduction of a slot, Rayleigh waves are not observed behind the slot, except for the shortest slot depth, and the slot depth cannot be estimated in the frequency-wavenumber domain. Autospectrum calculations reveal strong Rayleigh wave reflections in front of the slot and by can be used to estimate slot depth when the wavelength is less than half the beam depth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.