Abstract

Abstract Superrefraction at the top of the atmospheric boundary layer introduces problems for assimilation of radio occultation data in weather models. A method of detection of superrefraction by spectral analysis of deep radio occultation signals introduced earlier has been tested using 2 years of COSMIC-2/FORMOSAT-7 radio occultation data. Our analysis shows a significant dependence of the probability of detection of superrefraction on the signal-to-noise ratio, which results in a certain sampling nonuniformity. Despite this nonuniformity, the results are consistent with the known global distribution of superrefraction (mainly over the subtropical oceans) and show some additional features and seasonal variations. Comparisons to the European Centre for Medium-Range Weather Forecasts analyses and limited set of radiosondes show reasonable agreement. Being an independent measurement, detection of superrefraction from deep radio occultation signals is complementary to its prediction by atmospheric models and thus should be useful for assimilation of radio occultation data in the atmospheric boundary layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call