Abstract
Supercoiled DNA duplexes of phages phiX 174 and PM2 were treated in aqueous solution at neutral pH with ultimate and proximate carcinogens. Subsequently, the carcinogen-treated phage DNAs were subjected to velocity sedimentation in neutral and alkaline sucrose to quantitative introduction of single strand breaks. Reaction of phage DNA with the ultimate carcinogens N-methyl-N-nitrosourea (MeNOUr), N-ethyl-N-nitrosourea (EtNOUr), 7-bromomethyl-benza[a]-anthracene, N-acetoxy-2-acetylaminofluorene [(Ac)2ONFln] and K-region oxides for short periods followed by sedimentation in neutral sucrose gradients led to very few breaks. Incubation with the proximate carcinogens N-hydroxy-2-acetylaminofluorene, 2-acetylaminofluorene, 7-methyl-, and 7,12-dimethyl-benza[a]anthracene did not result in breaks. However, when the phage DNAs were reacted with the ultimate carcinogens under the same conditions but subsequently alkali-denatured and sedimented in alkaline sucrose gradients, single strand breaks were readily introduced. Incubation with the proximate carcinogens followed by alkali denaturation and sedimentation in alkaline sucrose showed that only 7,12-dimethyl-benz[a]anthracene and, to a minor extent, 7-methyl-benz[]anthracene caused alkali-inducible breaks. The ability of N-methyl-N'-nitro-N-nitrosoguanidine to effect breakdown of superhelical phage DNA in alkali was found enhanced in the presence of N-acetyl-cysteine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Zeitschrift fur Krebsforschung und klinische Onkologie. Cancer research and clinical oncology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.